Anti-Differentiation Effect of Oncogenic Met Receptor in Terminally-Differentiated Myotubes
نویسندگان
چکیده
Activation of the hepatocyte growth factor/Met receptor is involved in muscle regeneration, through promotion of proliferation and inhibition of differentiation in myogenic stem cells (MSCs). We previously described that the specific expression of an oncogenic version of the Met receptor (Tpr-Met) in terminally-differentiated skeletal muscle causes muscle wasting in vivo. Here, we induced Tpr-Met in differentiated myotube cultures derived from the transgenic mouse. These cultures showed a reduced protein level of myosin heavy chain (MyHC), increased phosphorylation of Erk1,2 MAPK, the formation of giant sacs of myonuclei and the collapse of elongated myotubes. Treatment of the cultures with an inhibitor of the MAPK kinase pathway or with an inhibitor of the proteasome increased the expression levels of MyHC. In addition, the inhibition of the MAPK kinase pathway prevented the formation of myosacs and myotube collapse. Finally, we showed that induction of Tpr-Met in primary myotubes was unable to produce endoreplication in their nuclei. In conclusion, our data indicate that multinucleated, fused myotubes may be forced to disassemble their contractile apparatus by the Tpr-Met oncogenic factor, but they resist the stimulus toward the reactivation of the cell cycle.
منابع مشابه
Dedifferentiation of Mammalian Myotubes Induced by msx1
The process of cellular differentiation culminating in terminally differentiated mammalian cells is thought to be irreversible. Here, we present evidence that terminally differentiated murine myotubes can be induced to dedifferentiate. Ectopic expression of msx1 in C2C12 myotubes reduced the nuclear muscle proteins MyoD, myogenin, MRF4, and p21 to undetectable levels in 20%-50% of the myotubes....
متن کاملExpression of PDGF A-chain and beta-receptor genes during rat myoblast differentiation
L6J1 rat myoblasts and rat skeletal muscle were studied for expression of mRNAs encoding PDGF A-chain, PDGF B-chain, PDGF alpha-receptor, and PDGF beta-receptor during in vitro and in vivo myoblast differentiation. RNA blot hybridizations demonstrated expression of the PDGF A-chain gene and the PDGF beta-receptor gene in L6J1 myoblasts and in crude muscle tissue isolated from developing rats. T...
متن کاملDexamethasone-dependent inhibition of differentiation of C2 myoblasts bearing steroid-inducible N-ras oncogenes
ras proteins are localized to the plasma membrane where they are postulated to interact with growth factor receptors and other proximal elements in intracellular cascades triggered by growth factors. The molecular events associated with terminal differentiation of certain skeletal myoblasts are inhibited by specific polypeptide growth factors and by constitutive expression of transforming ras o...
متن کاملExpression of E1A in terminally differentiated muscle cells reactivates the cell cycle and suppresses tissue-specific genes by separable mechanisms.
Terminally differentiated cells are characterized by permanent withdrawal from the cell cycle; they do not enter S phase even when stimulated by growth factors or retroviral oncogenes. We have shown, however, that the adenovirus E1A oncogene can reactivate the cell cycle in terminally differentiated cells. In this report, we describe the molecular events triggered by E1A in terminally different...
متن کاملDown-Regulation of Myogenin Can Reverse Terminal Muscle Cell Differentiation
Certain higher vertebrates developed the ability to reverse muscle cell differentiation (dedifferentiation) as an additional mechanism to regenerate muscle. Mammals, on the other hand, show limited ability to reverse muscle cell differentiation. Myogenic Regulatory Factors (MRFs), MyoD, myogenin, Myf5 and Myf6 are basic-helix-loop-helix (bHLH) transcription factors essential towards the regulat...
متن کامل